Learn how to access and analyze Sentinel-1 radar imagery that can see through clouds and capture data day and night.
Sentinel-1 is a radar satellite mission that provides continuous all-weather, day-and-night imagery for land and ocean monitoring. Unlike optical satellites like Sentinel-2, Sentinel-1 uses Synthetic Aperture Radar (SAR) technology.
Radar imagery works differently from optical imagery. Instead of capturing reflected sunlight, radar satellites emit microwave signals and measure how they bounce back from Earth's surface.
To find Sentinel-1 imagery for your area of interest, use the search endpoint:
POST
https://observearth.com/api/s1/search/
Parameter | Type | Required | Description |
---|---|---|---|
geometry_id | UUID | Yes | UUID of your Area of Interest |
start_date | string | Yes | Start date in YYYY-MM-DD format |
end_date | string | Yes | End date in YYYY-MM-DD format |
import requests
import json
api_key = "your_api_key_here"
url = "https://observearth.com/api/s1/search/"
payload = {
"geometry_id": "123e4567-e89b-12d3-a456-426614174000",
"start_date": "2023-01-01",
"end_date": "2023-01-31"
}
headers = {
"Content-Type": "application/json",
"X-API-Key": api_key
}
response = requests.post(url, json=payload, headers=headers)
data = response.json()
# Print the results
print(f"Found {len(data['results'])} images")
for image in data['results']:
print(f"ID: {image['id']}, Date: {image['date']}, Platform: {image['platform']}")ers = {
"X-API-Key": api_key,
"Content-Type": "application/json"
}
response = requests.post(url, headers=headers, data=json.dumps(payload))
data = response.json()
for image in data['results']:
print(f"ID: {image['id']}, Date: {image['date']}")
Once you've found available images, you can calculate statistics for radar indices over your area of interest.
POST
https://observearth.com/api/s1/stats/
Parameter | Type | Required | Description |
---|---|---|---|
geometry_id | UUID | Yes | UUID of your Area of Interest |
start_date | string | Yes | Start date in YYYY-MM-DD format |
end_date | string | Yes | End date in YYYY-MM-DD format |
index | string | Yes | Radar index to analyze (e.g., "rvi") |
import requests
import json
api_key = "your_api_key_here"
url = "https://observearth.com/api/s1/stats/"
payload = {
"geometry_id": "123e4567-e89b-12d3-a456-426614174000",
"start_date": "2023-01-01",
"end_date": "2023-01-31",
"index": "rvi"
}
headers = {
"X-API-Key": api_key,
"Content-Type": "application/json"
}
response = requests.post(url, headers=headers, data=json.dumps(payload))
data = response.json()
for result in data:
print(f"Date: {result['date']}, Mean RVI: {result['mean']:.2f}")
Once you've identified the images you want, you can retrieve them for visualization or analysis.
GET
https://observearth.com/api/s1/image/{geometry_id}/
Parameter | Type | Description |
---|---|---|
geometry_id | UUID | UUID of your Area of Interest |
Parameter | Type | Required | Description |
---|---|---|---|
item_id | string | Yes | ID of the Sentinel-1 image |
image_type | string | Yes | Image format (png, jpeg, or tif) |
index | string | Yes | Radar index to visualize (e.g., "rvi") |
import requests
api_key = "your_api_key_here"
geometry_id = "123e4567-e89b-12d3-a456-426614174000"
item_id = "S1A_IW_GRDH_1SDV_20230115T123456_20230115T123521_046880_059F1A_5D8B"
url = f"https://observearth.com/api/s1/image/{geometry_id}/"
params = {
"item_id": item_id,
"image_type": "png",
"index": "rvi"
}
headers = {
"X-API-Key": api_key
}
response = requests.get(url, params=params, headers=headers)
# Save the image
if response.status_code == 200:
with open("sentinel1_rvi.png", "wb") as f:
f.write(response.content)
print("Image saved successfully")
else:
print(f"Error: {response.status_code}, {response.text}")
In radar imagery, brightness corresponds to the strength of the radar signal that returns to the satellite:
Sentinel-1 is excellent for flood monitoring because water appears very dark in radar imagery, creating a clear contrast with land.
Radar can detect crop structure, growth stages, and soil moisture, providing valuable information even during cloudy growing seasons.
Now that you understand how to work with Sentinel-1 radar imagery, you can: